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We present a detailed account of our videomicroscopy experiments on morphological instabilities of
the nonequilibrium nematic-isotropic interface of the liquid crystal 8CB. For the parameter region
chosen in our experiments, the time evolution of the amplitude of the most unstable spatial mode of the
interface, during the planar-cellular bifurcation, can be well described by a third-order Landau-
amplitude equation. Instability growth rates and cubic coefficients are in agreement with the two-sided
model of solidification. Interface kinetics was also considered. In addition, we have made an analytical
calculation of the Eckhaus boundary for solidification models. Even though we use an amplitude equa-
tion in our calculation, we have obtained a tilted Eckhaus boundary. This feature was previously be-
lieved to show up only in numerical calculations of complete models of solidification. We attempt to ex-
plain the final wave vectors measured in our experiments based on an Eckhaus instability. Another

selection mechanism is mentioned.

PACS number(s): 61.30.Jf, 81.30.Fb, 05.70.Ln

I. INTRODUCTION

The search for universal behavior in nonequilibrium
systems, and the necessity of a more general theoretical
framework to deal with the wide range of phenomena ob-
served, has demanded controlled experiments carried out
systematically in different prototype systems. Tradition-
ally, hydrodynamic systems have received most of the at-
tention. The amount of data about Rayleigh-Bénard or
Taylor-Couette instabilities is large and has contributed
enormously to the present understanding of pattern for-
mation outside of equilibrium, transition to chaos, and
turbulence. In order to check the universal character of
some of the phenomena observed and the theoretical pre-
dictions, one has to study other prototype systems.

Recently, Cross and Hohenberg published a review on
pattern formation outside of equilibrium, with a
thorough discussion about the many systems studied up
to now and with an updated view of the theoretical
methods used in this field of research [1].

Solidification of thin samples of pure or binary mix-
tures has become an important prototype system to study
pattern formation outside of equilibrium and instabilities
with complex dynamics. In this case, the motion and
shape of the interface between two different thermo-
dynamic phases is the subject of study. It is at the inter-
face that a first-order phase transition takes place,and
consequently, where the important physical processes
occur. If the interface is moving towards a metastable
phase, instabilities can occur and the interface, initially
planar, may turn into one with a more complex shape.
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A linear stability analysis of the planar-cellular bifurca-
tion, during solidification of pure and alloy systems, was
first performed by Mullins and Sekerka (MS) [2]. The
linear analysis is important to identify the physical mech-
anism of the instability, to determine the important
length scales of the problem, and the values of the critical
parameters. In the case of directional solidification of
binary mixtures, the sample is pulled with constant veloc-
ity under a constant temperature gradient, as shown in
Fig. 1. The important control parameters, which can be
externally adjusted, are the pulling velocity, the tempera-
ture gradient, and the solute concentration of the mix-
ture. The available theories consider solidification in
two-dimensional systems. Experimental realization of
this geometry is accomplished with the use of very thin
samples (of the order of a few um), sandwiched between
microscope glass slides. Clearly, this is an approximation
and the third dimension (thickness of the sample) may
have some influence on the results. Comparison between
the results of the linear analysis and experimental data is
reliable near the onset of the instability. The linear
analysis is unable to predict the final shape of the inter-
face.

A weakly nonlinear stability analysis of the planar-
cellular bifurcation of alloys during directional
solidification was performed by Wollkind and Segel (WS)
[3], in order to determine the nature of the bifurcation.
The one-sided model of solidification, where diffusion of
impurities in the solid is neglected, was considered. Their
main conclusion was that, for usual alloys, the planar-
cellular bifurcation is subcritical: the interface is linearly
stable and the instability occurs for finite deformation
amplitudes of the interface. This is to be compared to the
case of a supercritical bifurcation where the instability in-
itiates with infinitesimal deformation amplitudes of the
interface. As a consequence, the amplitude of the cellular
pattern originated from a subcritical bifurcation is al-
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ready large, well within the nonlinear regime, where the
Mullins-Sekerka predictions are no longer valid.

Much effort has been devoted to check the Mullins-
Sekerka predictions for various alloy systems. Cheveigné
et al. [4] compiled much of the existing data for alloy
solidification and were able to identify two classes of sys-
tems: one with cellular structures whose wavelength, at
the onset of the instability, satisfies the Mullins-Sekerka
predictions, and the other which does not. They claimed
that for the class of systems which satisfied Mullins-
Sekerka the planar-cellular bifurcation was supercritical
and the other subcritical.

In order to make detailed comparison with the predic-
tions from the liner and weakly nonlinear analysis, it is
important to have a system where the planar-cellular
transition, during directional solidification, is supercriti-
cal.

Caroli, Caroli, and Roulet (CCR) [5] predicted that the
planar-cellular bifurcation for the moving nematic-
isotropic interface of liquid crystals should be supercriti-
cal. In addition, this transition occurs in a more con-
venient region of growth parameters than in usual alloy
systems. Oswald et al. [6] were the first to observe the
planar-cellular transition of the nematic-isotropic inter-
face of a liquid crystal. As predicted by CCR, the transi-
tion was observed in a more convenient region of growth
parameters and the linear region of the instability
(Mullins-Sekerka region) was accessible to observation.
Later on, Simon and Libchaber discovered new secon-
dary instabilities in this system, as parity-broken states,
traveling waves, solitary modes, and others [7]. It was
later demonstrated by Coullet and Ioos [8] that these
secondary instabilities are generic in one-dimensional in-
terfaces. By symmetry considerations they predicted the
existence of ten different secondary instabilities.

Other experimental advantage of the liquid crystal sys-
tem is that the characteristic times for dynamic bifurca-
tions are of the order of minutes, while for directional
solidification of regular alloys they can be of the order of
hours [9,10]. Therefore, by using liquid crystals one can
study a wide variety of dynamical phenomena in a
reasonable time interval.

The weakly nonlinear analysis of the planar-cellular in-
stability [3,5,11] shows that the time evolution of the am-
plitude A4; of the most unstable spatial Fourier mode of
the interface, with wave vector k, can be described by a
third-order Landau-amplitude equation, namely,

dt

=Q, A, —ay | 4,174, , (1

where (2, and «a, are real constants. If both Q; and «,
are positive, the cellular bifurcation is supercritical; if

both are negative, the bifurcation is subcritical. The
solution to this equation for the supercritical case is
1
|4 k = > ,
Vi /Q+(1/| Ag|1>—ay /Q; Jexp(—29Q, 1)
(2)

where A, is the amplitude at t =0. The initial perturba-
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tion amplitude A, originates from thermodynamic fluc-
tuations which are amplified by the instability. The in-
troduction of this initial amplitude is a way of avoiding
the introduction of a noise term in the deterministic
Landau-amplitude equation above. The drawback is that
A, is an adjustable parameter in this equation, which is
not explicitly connected to more fundamental thermo-
dynamic quantities of the problem.

Experiments on the initial time evolution of a solid-
liquid front instability during free growth (driven by heat
diffusion) of pure succinonitrile was first performed by
Chou and Cummins [12]. In an attempt to compare their
results with the predictions of the Mullins-Sekerka linear
analysis, some disagreement was found, probably caused
by a nonuniform undercooling in front of the interface.

Recently, we performed systematic experiments on the
planar-cellular transition of the moving nematic-isotropic
interface of the liquid crystal 8CB, during directional
solidification [13]. In this case the transition is driven by
the diffusion of impurities, resulting in constitutional su-
percooling of the liquid near the interface. We showed
that the amplitude A4, for the cellular bifurcation follows
the equation above, with Q, and «, positive real con-
stants, indicating that this bifurcation is supercritical, as
anticipated theoretically. In addition, we compare the
experimental values for Q, and a;, with the theoretical
predictions from the two-sided model [5] and from the
symmetric model [11]. From the fit of the data of O, as a
function of the growth velocity V, for different tempera-
ture gradients G, we obtained values for the parameters
of the experiment, which are within the range expected
for liquid crystals, with one exception: the capillary
length, which turned out to be 100 times larger than the
predicted value obtained from the ratio between surface
tension and latent heat of the nematic-isotropic transition
of the liquid crystal 8CB. It indicates that the main re-
storing force, which stabilizes the nematic-isotropic inter-
face, is not the capillary force originated from the Gibbs-
Thomson effect. Therefore, other mechanisms of stabili-
zation of the interface have to be searched. Recently
Bechhoefer and Langer [14] considered the elasticity of
the nematic phase as a possible stabilizing force for the
nematic-isotropic interface. = While it reduces the
discrepancy, it cannot fully account for the experimental
observations. The disagreement between theory and ex-
periment remains unexplained.

In the sections to follow we will describe, in more de-
tail, the experimental method used in our liquid crystal
experiments and a comparison of the experimental data
obtained with the two-sided model. An analytical calcu-
lation of the Eckhaus boundary for this problem, which is

_general for solidification, will be also presented and it will

be compared with the results of the wave vectors of the
instability obtained from our experiments.

II. EXPERIMENTAL PROCEDURE

A. Apparatus

Our experimental apparatus is based on the setup
designed by Hunt et al. [15] and is presented in Fig. 1. It
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FIG. 1. Experimental apparatus for directional solidification.
A temperature gradient G is established on the sample by the
hot (7';) and cold (T,) ovens. The sample is pulled with veloci-
ty V towards the cold oven, such that the ordered phase grows.

consists of two ovens separated by a 10-mm air gap and a
precision pulling system. The oven’s temperatures are
chosen one above and the other below the nematic-
isotropic transition temperature of the liquid crystal
used. The sample is a layer of liquid crystal, sandwiched
between two glass slides, oriented in the homeotropic
configuration (the director is normal to the glass slides).
The sample is put in contact with the two ovens, such
that a temperature gradient is established across it. A
nematic-isotropic interface is then formed in the gap be-
tween the two ovens. The sample is then pulled at con-
stant speed towards the cold oven and a ‘‘directional
solidification” process takes place: the nematic phase
grows, at the expenses of the isotropic phase, with con-
stant speed that is determined externally by the pulling
system. The temperature of the hot oven is controlled by
a Ricor temperature controller and the cold one by a
Lauda water circulating bath. The overall temperature
stability is about 3 cK, during the time of typical experi-
mental runs, which is around 1 h. The pulling system
consists of a Micro-Controle micrometric translator,
which is coupled to a reduction gear box driven by a dc
motor, powered by a stabilized dc power supply. The
motor gives an electronic output proportional to its angu-
lar speed that can be read by a digital counter and
recorded. Careful calibration of the pulling velocity was
done by comparing this electronic output with direct
readings of the micrometric translator for the various
reduction factors of the gear box. Overall stability was
better than 0.1% and the accuracy better than 0.1 um/s.
We use a large field, large working distance Olympus
SZ-TR-BR microscope in the configuration of transmit-
ted light, coupled to a Dage-MTI-CCD camera (480
lines X 640 horizontal pixels). Images were recorded with
a Sony Hi8 VCR, EV0-9650. Recording is digitially in-
dexed in the tape, such that the time resolution is exactly

" tor was typically 2.18 um™ .
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one frame or <+ s.

% Later, recorded images are digitized
using a Data Translation frame grabber DT2255 and
stored on a Mackintosh Quadra 700 computer. They are
processed and the interface extracted. The contrast of
the interface images was always very good, such that di-
gital filtering or the use of polarizers was unnecessary.
Lengths in the sample were calibrated by using a mi-
croruler, with a 2-mm scale and 200 divisions. Before
each experimental run, an image of the ruler was taken to
calibrate the lengths involved. This procedure gives us
reliable length measurements, independently of the opti-

cal magnification used. The measured Nyquist wave vec-
1

B. Sample preparation

We used the liquid crystal 8CB (4,4'-n-
octylcyanobiphenyl) made by BHD Ltd. [16]. It is a ther-
motropic liquid crystal whose characteristics of chemical
stability and physicochemical properties make it con-
venient for directional solidification experiments. The
temperature of the nematic-isotropic transition is 40.5°C
and 33.5°C for the smectic- 4 —nematic one, both for a
pure material. Table I gives the values of some of its phy-
sicochemical constants. According to the manufacturer,
the main impurity content of the material, as it leaves the
factory, is water with saturation concentration of 0.15
mol % [16], mainly due to the highly hygroscope isotro-

TABLE I. Thermodynamic data for the liquid crystal 8CB.

Transition temperatures

Transition T (°C) Reference
Sol—Sm-A4? 21.5 16
Sm-A —-N 335 16
N—I 40.5 16

Physicochemical properties

Value Units Reference
Mol. weight 291.2 g/mol 16
Density 0.980 g/cm’ 19°
L 1.2%x1077 dyn 19®
L, 1.9%1077 dyn 19°
L, 2.4%1077 dyn 19°
Viscosity 3.0X1072 poise 19°
MwcH 0.15 mol % 16

Nematic-isotropic transition

Value Units Reference
Surface tension 0.0094 dyn/cm 19
Latent heat 6.12X10° erg/mol 19
1st Landau coef. 1.9Xx10° erg/(cm*K) 19
Correlat. length 17.5+18 A 19
Ta-T*® 2 K 19

2Sm- A denotes smectic A.

bValues measured at the N — I transition.

°Franck elastic constants.

YMWC denotes maximum water concentration.

°T* denotes the virtual second-order transition temperature.
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pic phase. During sample preparation no special care
was taken to control the water content in the material.
As a consequence, the impurity and its concentration are
unknown parameters of the experiment. The glass plates
are first cleaned with a solution of distilled water and Ex-
tran [17] at 60°C in an ultrasound bath for 30 min. After
that, they were extensively rinsed with running distilled
water and dried at 120°C for 4 h.

To generate the homeotropic configuration, the glass
plates were covered by a silane agent [18] composed of
molecules with a silane base and a long carbonic chain
(like C gH3g), which form a tail parallel or perpendicular
to the glass substrate, and gives rise to a planar (LC mole-
cules parallel to the substrate) or a homeotropic
configuration, depending on the orientation of the chain
relative to the silane base. Two microscope glass slides,
treated with silane and separated by a spacer of a few mi-
crometers, form the cell where the LC is introduced in
the isotropic phase. The carbonic tail of the silane causes
a good homeotropic orientation for spacer thickness of
the order of or less than 50 um. The samples were
prepared open to the atmosphere, and since the isotropic
phase is highly hygroscope, no control of the water con-
tent was possible.

In Ref. [19] convective rolls in front of the interface
were observed for sample thickness greater than 5 pum.
To avoid this effect, which can complicate the theoretical
analysis of the experiment, we constructed our sample in
an edgelike shape, such that in one end the glass plates
touch each other, and at the other end a spacer of 20 um
was used. The sample thickness then varies from zero on
one end up to 20 um at the other end. The experiments
were performed in a working region of the sample where
the thickness varied at most from 2.5 up to 4.5 um. By
knowing the spacer thickness, which was measured with
a digital Mytutoyo micrometer with precision of 1 yum,
and using interference techniques, the thickness of the
sample was measured with approximately 5% error. To

FIG. 2. Sequence of images showing the interface at different
times. The nematic phase is above and the isotropic one is
below the interface. Experiment performed with G =43.3
K/cmand V' =18.5 um/s.
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select the glass plates with the best flatness, each one is
first checked against an optical flat (A/20) by using a
laser interference technique. With the chosen plates, a
different interference pattern is constructed with two
plates in contact with each other, without a spacer.
Again, the best combination of two plates is then chosen.
At this point, the edgelike cell is prepared and the work-
ing region is delimited. After that, the cell is filled in
with the liquid crystal. All the experiments were per-
formed within the working region, generally measuring
15X 17 mm?.

C. Measurements

In our experiments we were able to follow the time
evolution of the nematic-isotropic interface morphology.
Images of an interface at various instant of time are
shown in Fig. 2. The images are processed and the inter-
face positions are extracted. We perform fast Fourier
transforms (FFT) of the interfaces and obtain the spatial
power spectra of the interface deformations, as shown in
Fig. 3(a). Finally, the value of the magnitude of the am-
plitude A, as a function of the time is obtained. An ex-

I 1 (um?)

IA,I (um)

‘I 1 L 1
0 20 40 60 80 100 120 140

t(s)

FIG. 3. (a) Power spectra for the sequence shown in Fig. 2.
The thickest line refers to the latest time (1 =106 s in Fig. 2).
(b) Time evolution for the amplitude of the most unstable mode
obtained from the power spectra of (a). The solid line is the best
fit using Eq. (2). For this fit 0, =0.069 s~ ! and a; =0.002
(um?s)™ L,
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ample for ¥ =18.5 um/s and G =43.3 K/cm is shown in
Fig. 3(b). The circles are the experimental points and the
continuous line is the fit using Eq. (2). We see that the
time evolution of the nematic-isotropic deformations dur-
ing directional solidification follows the universal
behavior described by a Landau-amplitude equation.
From this fit we obtain the values for Q, and «; for
different ¥ and G. These values will be compared with
solidification models.

III. THE TWO-SIDED MODEL OF SOLIDIFICATION
A. Theory of CCR

In this section we present the relevant results of a mod-
el of directional solidification from the work by CCR [5].
This model considers that thermal and impurity diffusion
take place in both sides of the interface. In addition, the
calculations are done for any segregation coefficient K.
Consequently, the two-sided model has both the one-
sided [2,3] and the symmetric [11] models as limiting
cases.

In the sketch of the directional solidification setup
presented in Fig. 1, the sample is put in thermal contact
with the ovens at constant temperatures 7T, > T,, (the
liquid side) and T, < T, (the solid side). Here T}, is the
melting temperature of a crystal or the nematic-isotropic
transition temperature of our liquid crystal. A stationary
temperature gradient G is established along the sample
and a planar interface at T =T, is formed. The sample
is then pulled at constant velocity V. If a small concen-
tration C, of an impurity is dissolved into the material, a
cellular instability may occur for some values of the pair
(G,V). The basic equations for describing this
phenomenon are stated below.

(a) Volume diffusion of concentration and heat in each
phase:

DV2c+V—a~9—a—C=0, (3a)
oz ot
VT =0, (3b)
pve 4y 93¢ (3¢)
dz at
ViT'=0. (3d)

Equations (3a) and (3b) are defined for the liquid phase,
while Egs. (3c) and (3d) are defined for the solid phase.
Equations (3b) and (3d) are used, rather than the full
diffusion equation because heat diffusion coefficients are
of the order of 10° larger than mass diffusion coefficients,
such that the thermal fields can be considered static dur-
ing the time scale of variations of the concentration fields.

(b) Interface boundary conditions, at z =¢{(x,t), where
€ is a smallness parameter (¢ =0 corresponds to a planar

]

2GI Tydolk?
G+ D(—KmC,  (1—K)mC,

Qr=
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interface): continuity of temperature,
T=T"; (4a)
heat balance,
o7’ OT of | oT' aT
- = = X7 | = . 4
"oz 3z ‘oax |"ox ox 05 (4b)
local phase equilibrium,
C'=KC ; (4c)
mass conservation,
ac_ act_ 3 [ac _ac
dz 1 dz ox | ox K ox
(K—1) V+e£ C
at
— . 4
D ;0 (4d)

curvature-induced local-interface-temperature shift,

C 82 5 21-3/2
1+?—+dos—5 —Q’ ] ;

1+¢?
M ax 2 & ax
(4e)

T=T,

where n=D'/D, D and D' are the impurity diffusion
coefficients, and n =% /K’', with # and ¥’ the thermal
conductivities; primed variables refer to the solid phase
and the unprimed ones to the liquid phase; d, is the
capillary length, given by the ratio between the solid-
liquid (nematic-isotropic) surface tension and the latent
heat; m is the liquidus slope of the binary phase diagram,
and it is a negative quantity for the systems considered
here. In the heat balance equation, Eq. (4b), we have
neglected the latent heat, since it is very small for the
nematic-isotropic transition.

In their work, CCR first obtained the solution for the
concentration and thermal fields for the stationary planar
interface. They studied the stability of this solution by
perturbing the planar-interface morphology with a small
deformation, with a single spatial frequency k, as below:

E(x,t)=exp(Qt)cos(kx) .

The temperature and concentration fields were perturbed
in a similar manner. There are six unknowns: the fields
in both phases, Q; and k, and five thermodynamic
boundary conditions at the interface. We use them to
eliminate the four fields and get a relation between
and k. To first order in €, CCR obtained a dispersion re-
lation as a function of the control parameters G, V, and
C, given by

{(p(Q,k)—1+K[1+np"(Q,k)]} —K [1+7p'(Q,k)] , (5a)
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where | =D /V,7=1/V, and
p(Qk)=1+1/L+Qr(kl)?,

P k) =+ L T (ki
2n M

In the quasistationary approximation Q7 << (kl)?, such
that Q7 can be neglected inside the expressions for p and
p’ above. The condition Q7 <<(kI)* can be rewritten as
Q <<k*D. For our experimental data, the worse situa-
tion corresponds to k*D~0.9s 'and Q=0.17 s, such
that for the analysis of our results presented in this paper,
this approximation is quite adequate.

As in the traditional Mullins-Sekerka analysis, for a
given G and C,, there is a critical pulling velocity V,
such that the interface’s morphology is stable for all k.
For V greater than ¥, a continuous finite band of unsta-
ble wave vectors is allowed. This band ends at a second
velocity, Vg, where capillary effects reestablish the planar
interface. The Mullins-Sekerka neutral stability curve is
indicated in Fig. 4, by the continuous line. Since no sin-
gle mode is selected the question of pattern selection is
not resolved.

For thin samples, where the heat transport is defined
by the sample’s boundaries (like glass slides), or for ma-
terials with similar thermal diffusivities in the ordered
and disordered phases, we can set # =1. Thin samples of
liquid crystals meet both requirements so we assume
n =1 as a good approximation in our work.

CCR performed also a nonlinear series perturbation
owing to obtaining the cubic coefficient of the third-order
Landau-amplitude equation. For this, following WS [3],
they assumed that the fields and the interface position
can be expanded as

V (um/s)

0.05 0.1 0.15 0.2 0.25 0.3 0.35
k (um™")

FIG. 4. Mullins-Sekerka stability region on the V-K plane.
The continuous line is the Mullins-Sekerka neutral curve, the
dash-dotted line is the calculated Eckhaus boundary, and the
dashed line represents the wave vectors with highest growth
rates obtained from the linear analysis.
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)

e6(x,t;e)= 3 €"§,(x,1),

n=1

vix,t)= i e"v,(x,t),

n=1

where v(x,z,t)=(C,C’,T,T"), {,(x,t)= A (t)cos(kx), and
vi(x,z,t)= A (t)v(z)cos(kx) with v,;(z) to be deter-
mined.

The first-order term of these expansions gives the
linear stability results. The nonlinear terms present in
the boundary conditions [Eqs. (4a)—(4e)] give rise to har-
monics of the single mode considered in the linear
analysis. Sufficiently near the bifurcation, where a nar-
row band of modes is unstable, we can assume that those
harmonics are not active. Collecting terms in the above
expansion up to second order in g, CCR obtained a
third-order amplitude equation [Eq. (1)]. The cubic
coefficient «; is algebraically very complex and will not
be displayed here. It can be found in the appendix of the
work of CCR.

B. Kinetic effects

If the crystal-melt interface is rough on atomic scale,
the kinetic growth law for solidification is given by

V=uAT ,

where V is the growth velocity, p is the kinetic
coefficient, and AT is the undercooling of the interface.
With the addition of kinetics the boundary condition Eq.
(4e) has to be modified, since the local temperature of the
interface is smaller than the melting temperature to keep
the crystal growing at velocity V. The new boundary
condition is then

21-3/2
= mC iZQ 2| 98
T=Ty 1+TM +doaax2 1+¢ "
v+
e (4e')
uTy

If we redo the calculations of CCR, but with the
boundary condition given by Eq. (4¢’), we obtain

—1
Qu)=q |1— 2K —1+np’

mGopr , (5b)

where G,=(1—K)Cy/Kl, and all the other variables
have been defined previously. We see that for very fast
kinetics, i.e., u very large, Eq. (5b) reduces to Eq. (5a),
since, in this case, the temperature of the interface is very
close to the equilibrium temperature, and kinetic effects
would be unimportant. If =0, which corresponds to
the one-sided model, Eq. (5b) reduces to the solution of
Coriell and Sekerka [20], for the one-sided model with
kinetics effects included. Equation (5b) is a generalization
for the two-sided model.
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C. Experimental results and analysis

Our main aim, in this section, is to test the two-sided
model of solidification, which should be adequate for the
liquid crystal system. All the data, presented in this pa-
per, were obtained with the same sample, for different
combinations of ¥V and G, as indicated in Table II.

The temperatures of the furnaces are chosen to give the
desired value of G. After stabilization of these tempera-
tures the liquid crystal sample is introduced in the ap-
paratus. By keeping the pulling velocity equal to zero,
after a while, a still, clean, flat nematic-isotropic interface
is seen in the field of view of the microscope. We then set
the desired pulling velocity ¥V and videotape the motion
of the interface. The planar interface moves towards the
cold end of the furnace and stops at another position.
The characteristic times for this initial transient can be a
few seconds up to several minutes. It is larger for smaller
velocities as one would expect. As we increase the veloci-
ty, the new position of the interface is farther away from
the initial one, since a larger undercooling of the isotro-
pic phase is necessary for keeping higher growth rates.
By another method of measurement we studied the kinet-
ics of this planar nematic-isotropic interface. We ob-
tained that the nematic-isotropic interface behaves like a
rough crystal-melt interface with a linear kinetic law:

V=uAT ,

where u is the kinetic coefficient and AT is the undercool-
ing of the interface. The measured kinetic coefficient is

©1=220£20 um/(sK) .

We will analyze our data both with and without kinetic
effects included.

-During the motion of the planar interface reported
above, a planar-cellular morphological instability may de-
velop, for some combinations of G and V. The images
from the time evolution of the cellular interface are
recorded and the time resolution of one frame (4 s) was
sufficient for the region of parameters (G, V) used in these
experiments. After extracting the coordinates of the in-
terface by digital analysis of the images, we perform a

TABLE II. Values for the control parameters G and V used
in our experiments. The boldfaced numbers were used to obtain
the quantitative data reported in this paper.

G (K/cm) V (um/s)
15 1.0,2.0,4.0,5.5,7.0,
8.5,10.0
20 1.5,2.0,3.0,4.0,5.0,
6.9.8.6,10.3
25 2.0,3.0,4.0,5.7,7.5,
9.2,10.9
30 2.3,3.44.6,5.2,5.7,
6.9,8.0,9.7,11.5
35 5.7,6.3,6.9,7.5,8.0,
10.3,12.6,14.3
43.3 5.2,6.3,7.2,8.0,10.0,
14.3,18.5,22.5
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FFT (fast Fourier transform) of the interface for different
times and obtain the spatial Fourier components A, of
the interface deformations as a function of time. As we
mentioned before, the transformation from pixels unit to
length units is obtained from the image of a calibrated
ruler taken under the same optical conditions as the im-
ages of the interface.

For checking the two-sided model of CCR we look for
a region of parameters (¥, G), where the observed dynam-
ics of the interface was simple enough to be described by
a third-order Landau-amplitude equation. This restricted
the parameter region for the sample used to 15
K/ecm <G <50 K/cm and e=(V —V_)/V,. <5, knowing
that ¥, depends on G. For G <15 K/cm, even for pul-
ling velocities near V,, the behavior of the interface was
very complex with, at long times, the appearance of
spatio-temporal chaos, as reported previously by
Flesselles et al. [9]. For larger values of G and for £¢>5
the cellular pattern has deep grooves similar to the case
of crystal-melt interfaces, and very fast initial-instability
growth rates. The power spectra contained many spatial
components and there was no predominance of a particu-
lar mode for all times. In Table II, the values of ¥V and G
used to obtain the quantitative data reported in this pa-
per are presented as bold-faced numbers. For these pa-
rameters, we did not observe the presence of significant
contributions of higher spatial harmonics in the spectra
of the cellular pattern. In most cases the spatial Fourier
amplitude A4, grows exponentially and saturates, as one
would expect for a cellular pattern. However, in some
cases, after saturation for a long time, A4, starts to grow
again and the interface starts to have a more complex dy-
namic behavior. We do not know if this is an intrinsic
phenomenon in this system, or an effect due to the finite
size of the sample. We are presently investigating it.
Consequently, we will use in this analysis only the data
with a saturation time which lasted at least three times
longer than the time constant of the initial exponential
growth of A,.

A typical plot of the magnitude of A4, as function of
time is shown in Fig. 3(b). The open circles are the exper-
imental points and the continuous curve is the fit using
the solution of the third-order Landau-amplitude equa-
tion, Eq. (2). From this fit one obtains the instability
growth rate {; and the cubic coefficient o, .

In order to compare the experimental values of {1, and
a; with the predictions of the two-sided model, we use a
relation between the (equilibrium) segregation coefficient
K and the liquidus slope m for diluted mixtures, the
well-known van t"Hoff formula [21]

RT}

m=-——r (1-K), (6)

where R is the universal gas constant and L the latent
heat. For the analysis of our experimental data we sub-
stitute Eq. (6) into Egs. (5a) and (5b), such that the
growth rates depend only on the parameter K instead of
the pair m and K. Therefore, during the fitting procedure
using Egs. (5a) and (5b) the adjustable parameters are D,
K, Cy,and d,.
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FIG. 5. Best fits of Eq. (5b) to the set of data of growth rates
Q,, for three different temperature gradients (solid lines), and
for n=0.5. Symbols are the experimental points. Temperature
gradients are G =43.3 K/cm (<), 35 K/cm (X), and 25 K/cm
(0). Parameters from these fits are displayed in Table III.

In Fig. 5 we present the data of Q; (including kinetic
effects) for different pulling velocities ¥V and temperature
gradients G. The continuous curves are the fittings using
Eq. (5b) from the two-sided model with kinetics, for
©=220 um/sK and 7=0.5. Since the linear and weakly
nonlinear analysis of solidification models do not predict
wave-vector selection, in order to fit Egs. (5a) and (5b) to
the experimental data, we used our experimental values
for the wave vector k. Both equations fit the data very
well. The fitting parameters can be seen in Table III.
Kinetic effects caused minor changes in these parameters.
In addition, these results do not change significantly for
values of 7 in the range from 0.4 up to 0.6. Therefore, we
have used 7=0.5, which is the experimental value for
various impurities in 8CB [19]. The value obtained
Cy=0.15 mol % is consistent with the hypothesis that
the main impurity is water. The value D ~70 um?/s, for
the diffusion coefficient of the impurity in the isotropic
phase, is also reasonable, if we compare with reported
values for D for methyl blue in the isotropic phase of
8CB, which are of the order of 40 um?/s [22]. Since the
water molecule is smaller than the methyl blue molecule,
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this result is also consistent with the hypothesis that wa-
ter is the main impurity. The values from 0.70 up to
0.74, for the segregation coefficient K, are also in the
range of measured values of K for many impurities, for
the nematic-isotropic transition in 8CB. Finally, the
value dy~7 A, for the capillary length, is the only one
which does not agree with the two-sided model. As seen
in the preceding section, the capillary length is the result
of the ratio between the surface tension and the latent
heat for the nematic-isotropic interface. From tabulated
values for these quantities one obtains that the capillary
length should be of the order of 0.05 A. Recently,
Bechhoefer and Langer [14] took into account the elastic
energy for deforming the nematic phase, as an extra sta-
bilizing energy for the nematic-isotropic interface. Even
though this calculation of the capillary length has in-
creased its value, it was not enough to solve the overall
discrepancy.

The coupling between anisotropic impurity diffusion in
the nematic phase and elastic deformations of the inter-
face was recently considered by Misbah and Valance [24].
By solving the two-sided model, but considering the
director dynamics and its coupling with the diffusion field
in the nematic phase (both in the bulk and at the inter-
face), they showed that the Mullins-Sekerka instability
presents, in this case, a growth rate with real and imagi-
nary parts. The presence of an imaginary part in the
growth rate should manifest itself by a drift of the struc-
ture transversely to the front. Even though this analysis
predicts new effects during melting and growth of the
nematic phase, it does not seem to be relevant to explain
the unusual capillary length that we observed in our ex-
periments. Therefore, a plausible mechanism, or mecha-
nisms, for explaining quantitatively the stabilization of
the nematic-isotropic interface in the sort of experiments
performed here, are still lacking.

The values, obtained from the fittings for the cubic
coefficient «;, showed large error bars. Nevertheless,
these values are compatible with the values predicted by
the two-sided and symmetric models, for the parameters
Cy, dy, K, and D obtained from the linear analysis
presented before. See our Ref. [13] for a complete set of
values of the cubic coefficient a;, for different pairs

(G, V).

TABLE III. Rows refer to the fitting parameters of Egs. (5a) and (5b) to the data of Q. Values in
parentheses refer to Eq. (5b), where kinetic effects are included. Values marked with an asterisk are

fixed in the fitting.

Data set D CO do

(K/cm) (um>/s) K (mol %) (A)

G =43.4 6742 0.740+0.004 0.14+0.02 642
(70£1) (0.74040.004) (0.1540.03) (7.54+2)

G =35.0 67+5 0.719-+0.004 0.14* 6*
(70+4) (0.722+0.004) 0.15* 7.5%

G =25.0 6616 0.690+0.01 0.14* 6*
(72+3) (0.720+0.004) 0.15* 7.5%
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IV. ECKHAUS INSTABILITY

A. Analytical calculation of the Eckhaus boundary
for directional solidification

The Eckhaus instability arises when a one-mode pat-
tern whose amplitude follows Eq. (1) is unstable against
small perturbations on its phase [25]. This is a classical
secondary instability first studied in the context of hydro-
dynamics [26]. The classical result given by Eckhaus
[27], valid near the bifurcation shows the existence of a
small band, inside the linearly unstable one, for which the
original pattern is stable against phase perturbations.
The first experimental measurement of the space and
time evolution of an Eckhaus instability was performed
by Lowe et al. [28] on experiments of electrohydro-
dynamics in liquid crystals. It is believed that, since this
instability shrinks the allowed band of wave vectors, it
can be an important mechanism of pattern selection.
More recently, in experiments on directional
solidification in liquid crystals, Simon, Bechhoefer, and
Libchaber [29] have seen evidence for the Eckhaus insta-
bility on the high wave number region of the Eckhaus
band, and a number of other secondary instabilities (see
also Ref. [7]). The work of Hernandes-Garcia et al. [30]
predicts that thermal fluctuations can be sufficiently
strong to drive the phase instability of unstable patterns.
Misbah and co-workers [31,32] developed numerical cal-
culations of secondary instabilities using the symmetric
model for directional solidification and not restricted to
regions of the parameter space near the bifurcation. In
particular, they found that the Eckhaus boundary is
asymmetric for wave vectors around the critical one.
This tilted Eckhaus boundary was not found previously
in the classical calculations using an amplitude equation.
Therefore, these numerical calculations were very impor-
tant to obtain a correct Eckhaus boundary for solification
problems.

In this section we present an analytical calculation of
the Eckhaus boundary valid over all the linearly unstable
band, and for any region of the parameter space. We also
obtain a tilted Eckhaus band, but from an amplitude
equation. Contrary to the conclusions of Brattkus and
Misbah [32], we think that this tilting is caused by the
properties of the linear dispersion curve and not due to
strong nonlinear interactions of a great quantity of
different spatial modes.

In our derivation some requirements on the dispersion
curve are assumed, but they are sufficiently general to be
model independent.

We start from a single mode pattern,

& (x,t)=a,(t)e™+c.c. , (7

where a; (¢) is the mode amplitude, &, (x,?) is the pattern
that is a real function of space and time variables, and
c.c. stands for complex conjugate. Assume that each
mode amplitude satisfies a third-order Landau-amplitude
equation

da,

71—‘=Q(k,s)ak—a(k,£)|ak|zak (8)
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with Q(k,¢€) the growth rate of the mode k obtained from
the linear stability analysis of the original problem and ¢
is a control parameter, which is zero at the planar-
cellular bifurcation. A more complex pattern, with many
modes interacting during their time evolution, is given by

Ulx,t)=3 6 (x,1), 9)
k

which no longer follows the time evolution defined by Eq.
(8), since nonlinear interactions cause the superposition
principle to fail. Nevertheless, mode couplings that lead
to the same original k are possible [25,26] with

k :(k _k1+k2)+(k1)_(k2) >

which corresponds to a third-order term of the form

E akle
ki k

172

ikyx o —ikyx

itk —k +kyx
ag. e
2

A —k | +k,©

—  ikx *
=e"™ 3 A Cky Bk —k | +ky
klkZ

It follows that the time evolution of the pattern given by
Eq. 9 is

Q_QZE Q(k,s)akeikx
ot <

tkx
—alk,e)e Eak‘a,fzak_lirkz +c.c. (10
Kk k,
If k, is a basic mode of U (x,1), it is convenient to write
k =k,+gq, replace 3, —3,, and define the (complex)
amplitude of the pattern by

A(x,0)=a, (e, (11)
q

which satisfies, after substitution into Eq. (10),

%”ti=29<k0+q,e>aqe"W—a(ko,e)! APa . (12
q

For the purpose of this work, we assume, in the above
equation, that the spectrum of the pattern consists of a
small wave packet around k,, in such a way that for a
given kg, a is constant for any value of the control pa-
rameter, i.e., a(ky,tg,e)=alky,e). At the latest step of
our reasoning g will be made arbitrarily small, so no seri-
ous restriction is imposed on this parameter. We also as-
sume a dispersion relation of a general form like in Fig. 6.
This form can represent instabilities in which the homo-
geneous solution of a pattern is unstable above a certain
critical value of the control parameter. It is worthwhile
to stress the explicit dependence of Q on k? coming from
the reflection symmetry x — —x for infinite systems. Ex-
panding Q about k3 we obtain

Q[(ky+¢)*]=Qy+Bg —Cq*+0(g*) (13)

with  Q,=Q(k,), B=2[dQ/d(k})lk,, and C
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FIG. 6. Typical dispersion curves (k) used in our calcula-
tion of the Eckhaus band. These curves are characteristic to
many pattern-forming systems. V is a control parameter.

=—[2k3d*Q/d (k})*+dQ/d(k})]. Introducing Eq.
(13) into Eq. (12) we obtain, up to second order,

04 94 9? A
a1 =Q0yA —iB—— e

—alAdl*4 . (14)

The above equation defines an amplitude equation for
the wave packet, that is valid for any k, and €. A real,

homogeneous, and stationary solution of it is
Ay=Vv'(Qy/a), whose associated  pattern is

Uy(x)=21(Qq/a)cos(kyx). We test the stability of this
solution by perturbing it with a small complex amplitude
y(x,t). By introducing y(x,t) into Eq. (14) and keeping
only the linear terms in y (x,#), one obtains

w__ g,y

o O gy 4y (15)

Now, consider a perturbation described by a long
wavelength modulation of the stationary amplitude A4,
and compatible with the expansion defined in Eq. (13),
i.e., with ¢ <<k,

y(x,t)=Ze“cos(gx)+iVe®sin(gx) , (16)

where Z and V are real numbers. Introducing it into Eq.
(15) we obtain a system of two linear equations for Z and
V, whose solvability condition is given by

@*+2(Cq*+Qp)o+ C2q*+(2Q,C —B?)g?=0 . (17)

For small g the roots of the above equation are

320 1 [ s |
(g%) = {2k} +—
A0 5
+ , (18a)
3(k3) ’q !
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RRY) 1 KRk
(¢%)_= {2k} | ==~
@4 { Ol ak3? Q| a(k2) ]
0 | ,
+ -9, . (18b)
akz) |1
We see that for ¢ =0, =0, and w_=—9Q, Thus,

©(0) corresponds to a neutral mode, which in the
present case is a phase mode, since a shift in the overall
phase of the pattern leaves the pattern unchanged.
w_(0) corresponds to an amplitude mode, since if we dis-
turb the amplitude of the cellular pattern it will relax
back with a rate Q, [25].

For ¢+0 the system is Eckhaus unstable if @ >0, so
®, =0 defines the Eckhaus boundary. From Eg. (18b) we
see that w_ <0 for sufficiently small g, such that the am-
plitude of the pattern is always stable in this approxima-
tion. The equation for w_ shows that this system can un-
dergo a phase instability with a diffusive behavior
(o, ~Dg?), with a phase diffusion coefficient given by

2% o0 30 l

1
D (k*e)=— 12k? —
(k%) { ak?  Q |ak?) 3(k2)

(19)

with no subscripts, since the reference point k is arbi-
trary. The zeros of this coefficient give the Eckhaus
boundary compatible with the general amplitude equa-
tion, Eq. (1), and the general dispersion relation of Fig. 6.
As stressed above, this result is not restricted to regions
near the bifurcation, as it is in the traditional calcula-
tions. As we will see below, the third term in Eq. (19),
dQ/d (k?), is the nontraditional one and it is responsible
for the tilting of the Eckhaus boundary.

Analytical determination of the Eckhaus boundary is,
in principle, obtained by inverting the implicit equation
D (k?%,e)=0. To determine the Eckhaus boundary for the
two-sided model we substitute the dispersion relation
given by Eq. (5b) into Eq. (19) and solve D (k2,€)=0 nu-
merically, since an analytical expression in this case is not
possible. An example, using the parameters of our exper-
iments obtained from the linear analysis, for G =43.3
K/cm, K =0.74, D =70 um 2/s, Cy=0.15 mol %, and
dy=1.5 A, is shown in Fig. 4. The continuous line
represents the linear-neutral-stability curve. The trace-
dotted line represents the Eckhaus boundary and the
dashed line the maximum-growth-rate wave vector.

Our Fig. 4 is qualitatively similar to Fig. 5 from the nu-
merical work of Gazali and Misbah of Ref. [31]. In that
paper, the obtained tilted Eckhaus boundary was sup-
posed to be due to strong interactions between many
modes. In our derivation, this effect can be attributed to
the fact that the linear dispersion relation is asymmetric,
given that Q[(k,+q)%el#Q[(k,—q)%e] for arbitrary
ko and e. This restriction generates the linear depen-
dence on the first derivative of Q in relation to k2, as can
be seen in Eq. (19), but only few modes, nearly located,
interact to originate this phase instability.

As expected, near the bifurcation, an analytical expres-
sion for the phase diffusion coefficient can be obtained.
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FIG. 7. Sequence of images showing the birth of a new cell
during the time evolution of the interface’s morphology. Exper-
iment performed at G =25 K/cm and V' =5.7 um/s.

For this purpose, we expand Q(k?¢) as
Q(k%e)=ae—b(k*—k2)*, (20)

where @ =03Q/d¢ and b= —0.53’Q/d(k?)* with both
derivatives calculated at the bifurcation. Using also the
approximation k% —kZ2=2k_q, with ¢ =k —k_, we obtain,
by substituting Eq. (20) into Eq. (19), the phase diffusion
coefficient valid near the bifurcation:

n=3 g

D ~4k?2b
Tl gi—q* Kk

) 2D

c

where g2 =ae/(4bk?). The first term inside the brackets
of the above equation is even in g and reproduces the
classical result [25]. The novelty is the term g /k,, which
is responsible for the tilting of the Eckhaus boundary.

Equation (21) shows why the tilting is so effective, even
very near the bifurcation, as first observed by Misbah and
co-workers in their numerical results.

B. Experimental results

In this section we present experimental results on the
measurements of the spatial wave vector of the nematic-
isotropic interface. For pulling velocities above the criti-
cal one we observed, in some circumstances, a noncon-
stant wave vector during the time evolution of the unsta-
ble interface. This migration of the wave vector was al-
ways towards greater values and more noticeable for
small gradients. An example of this effect can be seen in
the time sequence of interface shapes shown in Fig. 7,
and in their power spectra displayed in Fig. 8. It is possi-
ble to think about this phenomenon as being caused by an
Eckhaus instability, which is a hypothesis that we want
to test. We present here the results of our wave-vector
measurements, during the cellular instability, and com-
pare them with the calculations developed in the preced-
ing section.
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FIG. 8. Spectra of the sequence of images displayed in Fig. 7.
The initial wave vector is shown by the left arrow. The final one
is shown by the right arrow and corresponds to the morphology
after the new-birthed cell.

In the first qualitative observation of an Eckhaus insta-
bility in directional solidification done by Simon,
Bechhoefer, and Libchaber [29], they observed phase in-
stabilities on a stationary pattern, after abruptly changing
the pulling velocity. Differently, in our experiments we
observe the transient dynamics at constant velocity and
temperature gradient. The wave-vector migration that
we observed is not associated with an abrupt change be-
tween two different states of the pattern. In Figs. 9(a)
and 9(b) we present the final wave vectors measured in
our experiments, represented by the triangles, for the
temperature gradients of 43.3 K/cm and 25 K/cm, for
different pulling velocities, and their location inside the
linear unstable region. The Eckhaus band was calculated
using Eq. (19) of the preceding section.

In all cases, the initial and final wave vectors were lo-
cated inside the lower wave-vector side of the unstable
Eckhaus band. One notices that the observed final wave
vectors do not exactly match the Eckhaus boundary.
These results suggest that other mechanisms of pattern
selection might be operating.

In a recent article, Warren and Langer [33] proposed a
different mechanism for pattern selection in directional
solidification. They argue that the cellular instability
may occur while the impurity concentration field is still
in a nonsteady state. By considering a nonsteady concen-
tration profile, they predict a wave-vector migration,
from lower to higher values, since the front velocity is
changing with time (from a lower to a higher value) and
so the corresponding Mullins-Sekerka dispersion curve.
In this interpretation there is not actually a phase insta-
bility, but a change of the maximum-growth-rate wave
vector, following the changes in the concentration field.
This model displays a strong selection of a particular
wave vector. A detailed test of this model is under way
in our laboratory, and will be the subject of a future pub-
lication.



2434
25 y ‘
[
20 -
@ sl
E .
3 [
> 10 L
5 [
» L L L 1 FERT S S
0.05 0.1 0.15 0.2 0.25 0.3
k (pm™)
w
~N
£
3
>
OA’_V_*‘T"‘I_l_V_V_'_"TW‘ T T T T T ]
0O 005 0.1 0.5 0.2 025 0.3 0.35

k (um")

FIG. 9. Experimental values for the final wave vector and its
location inside the linear unstable region. Curves were calculat-
ed using the parameters of Table III, with kinetics. (a) Data for
G =43.3 K/cm. (b) Data for G =25 K/cm. Note that the ex-
perimental wave vectors are inside the unstable Eckhaus region.

V. CONCLUSIONS

In this paper we have presented a detailed account of
our experiments on the planar-cellular instability of a
moving nematic-isotropic interface of the liquid crystal
8CB and a brief review of the two-sided model of
solidification. In order to compare our results with the
two-sided model we looked for a parameter region where
the planar-cellular instability could adequately be de-
scribed by a third-order Landau-amplitude equation.
This was possible because the planar-cellular bifurcation
for the nematic-isotropic interface is supercritical, such
that, near the bifurcation, very few modes are unstable.
The instability growth rates as well as the obtained cubic
coefficients are in agreement with the two-sided model.
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When kinetic effects are included, an alternative expres-
sion for the growth rate of the instability is obtained.
The experimental data are still very well fitted by this ex-
pression, with parameters that are close to the ones ob-
tained without kinetic effects. The values for the parame-
ters that resulted from the fittings are reasonable for
liquid crystals, with the exception of the capillary length,
whose value was of the order of 100 times larger than the
one predicted by the Gibbs-Thomson relation. The addi-
tion of elastic contributions from the nematic phase to
the interface free energy, as considered by Bechhoeffer
and Langer, and the coupling between impurity diffusion
and the nematic director field by Misbah and Valance,
were not enough to solve this discrepancy. Therefore, it
is still lacking a complete understanding of the stabilizing
mechanism for the moving nematic-isotropic interface
during a directional solidification experiment.

Since the linear analysis predicts a continuous band of
wave vectors, we attempted to explain the final values for
the wave vectors observed in our experiments, based on
an Eckhaus instability. In order to do that, we first per-
formed an analytical calculation of the Eckhaus bound-
ary for solidification. The interesting result is that, even
for a calculation based on an amplitude equation, we
were able to obtain a tilted Eckhaus boundary, a feature
that was previously believed to show up only in numeri-
cal work of complete models of solidification, such as the
symmetric model. It was believed that to explain this
feature, the interaction between a great number of modes
would be necessary. Since an amplitude-equation ap-
proach is a simplification of the dynamics where very few
modes are active, we conclude that the tilting of the Eck-
haus boundary is not due to the presence of many modes
interacting, but due to the properties of the dispersion
curve of the linear problem. We have obtained a general
expression for the phase diffusion coefficient of the pat-
tern. It allowed us to calculate the Eckhaus boundary for
the two-sided model, by using the parameters obtained
previously from the linear analysis. Our results for the
final wave vectors do not support the hypothesis of an
Eckhaus instability as a pattern-selection mechanism in
our experiments. Therefore, other mechanisms must be
searched. In particular, the mechanism proposed by
Warren and Langer, where a nonsteady concentration
profile is considered, seems promising. Investigations for
checking this proposal are under way in our laboratory.
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FIG. 2. Sequence of images showing the interface at different
times. The nematic phase is above and the isotropic one is
below the interface. Experiment performed with G =43.3
K/cm and ¥V =18.5 um/s.
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FIG. 7. Sequence of images showing the birth of a new cell
during the time evolution of the interface’s morphology. Exper-
iment performed at G =25 K/cm and V' =5.7 um/s.



